
On various testing topics: Integration, large
systems, shifting to left, current test ideas,

DevOps

Matti Vuori www.mattivuori.net matti.vuori@mattivuori.net @Matti_Vuori

TUT lecture series of SW Technologies:

Integration and testing

Matti Vuori

9.12.2016 1(18)

Contents

Integration is valuable from many viewpoints 3

At many levels 5

Various situations 6

Requires 7

Good characteristics for integration testing system 8

Things to test 9

Integration test issues 10

Continuous integration mindset 12

Continuous integration pathologies 13

Speed of testing 14

Common problems 15

Success factors in integration testing 17

Integration is valuable from

many viewpoints 1/2

• Creation purpose

– Combine things, features together to form a news

whole

– Creating a new version for testing, deployment,

publishing

• Symbolic purpose

– Process that shows achievement for everyone

• Organisational purpose

– Central point of combining work

3(18)

Integration is valuable from

many viewpoints 2/2

• Measuring purpose

– Integration measures progress

– Showing areas that keep up or don't

• Assessment purpose

– Integration testing allows for trying the system

– Creation of a whole to understand it

• Problem identification

– Point to identify and solve problems

4(18)

At many levels

• Typically integration has many levels

– Software level: Module, feature, component

– Hardware / software integration

– Product integration: software with overall product /

platform, product configurations

– System integration: systems of systems

• Need to start the upper levels too as soon as possible

– Issue is related to scaling of agile development

5(18)

Various situations

• Building a brand new systems

– Building direction?

– Top to bottom? Need stubs, allows assessment of

concept

– Bottom to top? Needs drivers, builds a robust

platform, but the concept…

– => Customer / business needs + development needs

• Request, new requirement

– Continuous development flow… just add a piece

6(18)

Requires

• Strategy and rules

• Discipline

• Good distributed infrastructure and tools

• Configuration management – product/customer

configurations, versions; product and environments

• Good test design

• Work in progress management

• Synchronisation

• Prioritisation

• Sharing information

– What to prepare for, what should work and be tested
7(18)

Good characteristics for

integration testing system

• Fast to set up

• Reliable

• Handles load

• Supports testing

• Visibility

• Fast feedback to developers

• Integrated into workflows

• Supports distributed development

8(18)

Things to test

• Functional tests at many levels

• Security tests

• Simple performance tests

• Static code analysis

• Code metrics

• Adherence to architecture

• …

9(18)

Integration test issues 1/2

• Need to think of goals

– Just testing for a “working” build for system tests? (As

in building a house with working plumbing for testing

it)

– Doing real verification, proper finding of defects?

System testing?

– Learning about the system?

• Real integration tests

– Not just repetition of lower level (unit) tests

• Quality over quantity

– Good, relevant tests essential

10(18)

Integration test issues 2/2

• Target: functioning real system

– When something is integrated to a real system,

progress is made

– Implementation is worth nothing without working

integrated whole

• How to provide fast feedback?

– Test run design – last things first, regression tests

separately

• No bottlenecks

– Simple, efficient flow

11(18)

Continuous integration mindset

• Test everything automatable right away

• Test automation works best in very small batches

• Don't waste time and effort switching environments, just

use CI

• Learn to test everything fast

12(18)

Continuous integration

pathologies

• Speed overrides quality of tests

• If tests take long, they are simplified or not run at all

• Psychological need to keep radiators green – design that

way

• Environment standardised, less testing of configurations

• No system testing, no manual testing

• CI as magic tool

13(18)

Speed of testing

• Optimisation of tests based on dependencies

– Automatic optimisation?

• Parallel execution of a test set

• Many test sets

– Parallel execution with different target times

14(18)

Common problems 1/2

• Development management

– What to test, what should be working?

• Change management

– APIs removed or behaviour has changed

– Unplanned changes

– Planned changes that have negative effect –

regresssion

• Implementation

– Wrong use of APIs (parameters, values)

– Implementation does not match designs

– Fragile components
15(18)

Common problems 2/2

• Test environments

– Hardware or simulators not available

– Cannot do "pre-integration"

• Test design

– Slow tests – feedback from integration takes time

• Bad testability

– Cannot test system integration easily without a fully

working environment

16(18)

Success factors in integration

testing 1/2

• Common configuration

– Operations, development, testing, QA

– No surprises

• Knowing what to test – sharing information

– What should be working and what not?

– Preparation for what is coming

• Working on good testability

– Technology choices, architecture, design for testability

– Testability review

• Good documentation of APIs and such and API discipline

17(18)

Success factors in integration

testing 2/2

• Testing small as small as possible pieces at a time

– Incremental integration & tests

• Select integration order – development order that

supports goals

• Real integration tests

– Not just repetition of lower level (unit) tests

• Pre-integration at lower level

– As in developers doing local builds

• Minimise feedback delay to developers

– Test run design – last things first, regression tests

separately
18(18)

TUT lecture series of SW Technologies:

Testing of large systems

Matti Vuori

29.11.2016 1(12)

Contents

Some concrete problems of testing large systems 3

Problems are of course related to goals… 4

Keywords for success 5

Changing test focus 6

Some solutions: Organisational 7

Some solutions: Test approach 8

Some solutions: Testability 9

Some solutions: Fast feedback 10

Some solutions: Understanding the system & users 11

Some solutions: Understanding system in production 12

Some concrete problems of

testing large systems

• Knowledge of how it works.

• Test environments.

• Configurations.

• Changes.

• Plenty of different technologies.

• End to end testing.

• Large is usually at the same time complex and

business critical – difficult equation.

3(12)

Problems are of course related

to goals…

• Creating new systems, new value fast.

• Being more agile.

• Working with new business partners.

• Succeeding with less people.

• Managing risks.

• Having robust technical quality while complexity

increases.

• Creating great customer and user experience.

4(12)

Keywords for success

• Shared understanding, goals, priorities.

• Collaboration.

• Shared configurations.

• Work in progress control.

• Test management.

• …No silver bullets…

5(12)

Changing test focus

• Modules -> Overall system, business.

• Functionality -> Cyber security, customer experience.

• Technology management -> Complexity, diversity

management.

• What is implemented -> What brings value (testing in

feature teams).

6(12)

Some solutions: Organisational

• Are the main challenges technical or human?

• DevOps

– Collaboration / teams.

– Developers, systems management, QA working with

common information, goals, systems.

– Open up personal, silent knowledge to information

systems, databases, teams. No heroes.

– Supported with overall automation, database-derived

configurations, sharing information.

7(12)

Some solutions: Test approach

• Integration approach

– Start integration very early.

– One party responsible for integration.

– Emphasis on high-level test.

– Raising inspection focus to integration.

• Changes managed globally with configuration control.

– Database-derived configuration

– No surprises in testing, operations, from manual

fixups.

• Status views – what should be working, what not?

8(12)

Some solutions: Testability

• Testability is critical.

• Design for testability.

• Testability reviews by other teams.

• “Technology agnostic tools” such as Robot Framework

– As small adaptation surface as possible

9(12)

Some solutions: Fast feedback

• Effectiveness vs. efficiency

• Continuous top level integration tests

– Test selection for focus, priorities, risks.

– Test optimisation for speed, rapid feedback. Smaller

tests, faster.

– Exploratory testing is the fastest.

• Changes in implementation?

– Technology-agnostic test design (Robot Framework)

with small adaptation layer.

10(12)

Some solutions: Understanding

the system & users

• Keyword-driven, high level tests.

– Robot Framework already in wide use.

• Using tests to understand the system.

• Using tools to reveal dependencies, relations.

• Usability & user experience testing & analysis for

understanding users & customers.

• Bring customer and usage information closer to all

developers.

• From component development to features – meaning,

purpose for work, basis for verification & validation.

11(12)

Some solutions: Understanding

system in production

• A/B testing in production?

– Two alternative variations deployed.

– Collecting data for comparison.

• Big Data from production.

– Customer, user profiling.

– Reality-based priorities.

12(12)

TUT lecture series of SW Technologies:

Shifting testing to left

Matti Vuori

10.11.2016

Shifting testing to left?

• Response to doing testing at the end of processes –

even in agile

• Left means two things

– In process flow

– In time

• The sooner testing is done

– The shorter the feedback loop

– The simpler and cheaper the fixing of defects

– The more solid the platform for development and

testing

• Could you do more of it?
2(5)

Examples 1/3

• Development practices

– Feature teams that test features as fully as possible

before product integration and QA

• Evolving continuous integration

– Doing security and stress testing in continuous

integration platform instead of a separate

environment

– Doing as much as possible of system testing and

end-to-end testing in CI platform

– Hardware testing in CI

3(5)

Examples 2/3

• Simulation

– Testing with behavioural test models (Model-Based

Testing) before implementation

– Using simulators before real environments are

available

• Analysis

– Programmatic analysis for code, architecture before

testing

– Doing reviews

4(5)

Examples 3/3

• Rapid testing

– Doing exploratory testing immediately after something

is implemented, not waiting for any test code to be

written

– Helps in creating automated test also

• Prototypes

– Low-fidelity prototypes for user interface testing

• In general, the old rule: start testing as soon as possible

5(5)

TUT lecture series of SW Technologies:

Some current testing ideas

Matti Vuori

12.12.2016

Some current testing ideas

2 ()

Requirements /

requests

Sprint backlog ->

development
Unit tests

Integration tests

System / feature

test

More integration

and tests…

Overall system

QA…

Deployment /

delivery

Use / production

A/B tests

DevOps – collaboration with planning,

development

User experience

tests / Lean Startup

Security testing early

Early load / stress

testing

“Full” testing for features in

feature teams

General “shift left”

Virtualisation, cloud,

dockers instead of

staged servers

Shared

configuration

from database

Automatic test

generation

Exploratory testing

Overall development / test

management
Data analytics

Automation

for test

management

Physical robots in UI

testing

Fuzz testing

Product concept /

business level

Coordination and control at

organisation level

Coordination and control at

technical level Techniques, test types

Movements

2 ()

More automation

Risk & robustnessBusiness level

Intelligence

Tests in deployment

pipeline

Managed configurations

Security

Fuzz testing
User experience,

customer experience

Exploratory testing

Analytics

TUT lecture series of SW Technologies:

About DevOps and testing

Matti Vuori

12.12.2016 1(14)

Contents

What is DevOps 3

Some views to it 4

It’s about collaboration 5

It’s about sharing 6

DevOps is part of progress 7

Managing work in progress 8

System things it uses 9

Related important competences 10

"Global" repository as tool for collaboration 11

Possible data in more detail 13

Perhaps silliness in DevOps talk… 14

What is DevOps

• Wikipedia says:

DevOps (a clipped compound of development and

operations) is a culture, movement or practice that

emphasizes the collaboration and communication of both

software developers and other information-technology (IT)

professionals while automating the process of software

delivery and infrastructure changes. It aims at establishing

a culture and environment where building, testing, and

releasing software can happen rapidly, frequently, and

more reliably

https://en.wikipedia.org/wiki/DevOps

3(14)

https://en.wikipedia.org/wiki/DevOps

Some views to it

• It is a philosophy

• Practice where every unit, team, works for same goal in

a synchronised way

• Optimisation of the whole s/w production pipeline, not

local optimisations

• Just good professional collaboration?

• Some see it as a methodology

• Automation everywhere – testing, deployment,

configurations

• Extending continuous delivery to operations side

• Beware: Different people see DevOps in very

different ways
4(14)

It’s about collaboration

• Between operations, development, QA

• In planning projects, products, in designing,

implementing and hosting & maintaining them

• Specifying environments

• Ensuring testability for everywhere

• Selecting common tools and systems

• Doing problem solving, diagnostics

• Creating teams for those tasks

5(14)

It’s about sharing

• Information – what do we together need to put out next?

Work on that decision, not something else

Prioritisation, control of work in progress

• What is supposed to work and what not?

=> Clear targets for testing

• Configurations, environments – everyone working

on/against the same

=> Global configuration control, environments created from

database without manual work

Testing environments match the production "exactly"

Less surprises

6(14)

DevOps is part of progress

Area Examples

Technical progress Daily integration -> Continuous integration ->

Continuous deployment -> DevOps

Organisational

progress

Less siloes -> co-operation -> real collaboration and

sharing

Agility progress Programmatically created environments robust

platform, fast to deploy

7(14)

Managing work in progress

• What production needs, can digest

– Pull from operations

• Everyone focuses on doing that well

• Small increments just as in agile, continuous

deployment…

Simplicity, focus in testing

Collaboration

8(14)

System things it uses

• Configuration management -> shared configurations

• Environments built from configuration information

– Never any manual configuration

– Virtual machines and Dockers obviously help here

• Development management and test management

– Shared view to what is happening, progressing, what

comes next

– Total pipeline approach – from requests to

deployment and usage (ideas from continuous

deployment)

9(14)

Related important

competences

• Configuration management

• Business understanding

– Sharing the goals

• Process understanding

– Avoiding "local optimising"

• Collaboration, coordination and communication skills

– Orientation towards sharing

• Automation skills

– Test automation

– Configuration management

– Test environment management
10(14)

"Global" repository as tool for

collaboration 1/2

• DevOps suggest this idea (orig. from Jari Lehto, Nokia)

• System information

– Configurations – dev, test, production

• Customers and users

– Priorities, preferences, tailoring

– Utilisation profiles

• Development rules – standards etc.

• Development status

– What is going on, next steps, what should work

• Testing status

11(14)

"Global" repository as tool for

collaboration 2/2

• Data (big and small) available for everything

• Opportunities for intelligence

• => Empowering people

• => Away from blindness

• => Understanding goals

• => Focusing, optimising data sets and designs against

them

12(14)

Possible data in more detail

13(14)

Class Characteristics Role in test management

Customer information Customer profile, needs, systems, usage

profile, priorities

Drive test design

Requests Flow, external, critical to respond Require tests, test evaluation basis

Requirements Flow, changing, internal Require tests, affect test creation / generation, test

evaluation basis

Designs Changing, internal, have status (idea…

testable), expressed as models

Require tests, affect test creation / generation, tests

depend on status of

External requirements /

standards etc.

Changing, critical Require tests, affect test environments and tests

Test models Changing, respond to designs and

requirements (i & e)

Source for test generation

Tests Changing, respond to designs and

requirements (i & e), will be executed

Main source of monitoring, need planning, timing,

coordination

Test environments Changing, respond to customer profiles Need planning, designing, testing, coordination of use

of

Deployment

configurations

Changing, respond to customer profiles,

configuration models

Need testing, drive test configurations, depend on

development status

Monitoring data Flow, external, produce operational models Affect test design

Perhaps silliness in DevOps

talk…

• "DevOps engineer" sought in job adverts

– Why is such an "occupation" needed? Isn’t

collaboration just professional practice and necessary

today?

• "DevOps tester"…

• Seeing DevOps as strict, defined methodology

– People like methodologies, opportunity for

consultants, certificates.

– Every company needs to find their way of DevOps

that fits their business and culture

14(14)

