

 1 (10)

Matti Vuori, 18.3.2014

RATA project report

About the applicability and benefits of robot assisted
testing

Contents

1. Introduction .. 2

2. Why do we do test automation? ... 2

3. What does it require to automate tests .. 3

4. The problems with additional components ... 3

5. …and why robot assisted testing is different .. 4

6. Robots can work around testability problems ... 5

7. Speed of starting to test ... 6

8. What testing robots can and cannot do in software testing .. 6

9. Conclusions ... 8

APPENDIX 1: Applicability of various types of test automation ... 9

APPENDIX 2: Issues around robot assisted UI testing .. 10

 2 (10)

1. Introduction

Robot assisted testing is a quite new thing – as is any test automation to many people. Robot assist-
ed testing is not only new in the sense that is not used much in the industry, it is also a quite new
concept and there are not many experts even to ask about it. This is in contrast to traditional soft-
ware test automation, where there may be a couple of experts in many companies.

Because of that, we have written this short document. It will briefly explain about general goals and
challenges of test automation and outline the potential benefits and good applications for robot as-
sisted testing.

The context here is the testing of applications in devices – all the verification and validation of soft-
ware systems during their development and readying them for releases. We will not be discussing
testing of for example physical characteristics of mobile devices here.

2. Why do we do test automation?

There are various reasons why we do test automation. Some of them may be obvious, but let’s look
into them.

The first thing about automation is always letting the machine do most things that a human used to
do. It is understood that machines in general can be cost-effective in doing many things that can be
“programmed” and where the great abilities of humans are not required, for example using our
knowledge or the world in making decisions and doing ad-hoc planning of how to proceed. A ma-
chine can only do what it has been told to and it can only react on ways that it has been instructed
to. When it meets surprises, it gets stuck, but a human can analyze the situation and figure out how
to proceed – perhaps after discussing with other humans.

So the traditional use of test automation has been the testing with simple scripts that produce some
results that the machine can look and decide whether the test passed or not.

The real issue here is repetition. It takes time to automate things and automation requires plenty of
effort. With the effort required to create test automation for a simple data entry task a tester could
herself test that thing several times! So if testing something is only needed a couple of times, auto-
mation makes no sense. There are, luckily, things that need to be tested several times. Regression
testing of applications is one such thing. After some part of an application has been changed, other
parts of it are tested for regression – checking that nothing has been broken in the process of mak-
ing improvements. Such tests can be run quite many times – sometimes every few hours, for several
years… Of course, the problem here is that the things that are regression tested can change and
that can lead to a nightmare of updating the automated tests.

At the other end of the repeatability scale is the rapid testing of new features in agile software devel-
opment. After new features are implemented they need to be tested fast, to get quick feedback. But
then the features may be changed, developed further – or dropped altogether. Thus, the tests are
never repeated. That is the benefit of humans: we can start testing very fast, with no overhear, and
we don’t leave behind us baggage that should be reused. We “just do it”. Of course, some of the
tests that we do in rapid manner will continue their life as regression tests, but not nearly all. Be-
cause we have already carried out some serious manual testing, automating the good parts of it is
easy.

 3 (10)

Sometimes the tests that are automated are not simple either. Simplicity of the tests is usual at the
user interface tests, but “below the hood” there may be tests that are automated exactly for their
complexity that humans cannot handle. Consider the testing of some data exchange protocols.
There may be so many variations in their use of data fields that the only way to test them is to use an
algorithm to generate and execute a large number of tests. That way we can gain great coverage – if
there is enough time, a good portion of the variations can be tested. Humans could never do any-
thing similar. We can also add randomness to the test creation and execution because that will often
aid in bringing up problems,

But even in those cases the decision to automate is not so clear-cut. That is because humans can
see potential problems and focus on critical issues, which reduces the number of tests needed. That
may be done with careful analysis and test design or by exploratory testing that relies on the test ob-
servation to derive new tests. That is why some companies have turned into exploratory testing even
in regression testing of larger information systems – after running into the maintenance problems of
automated testing. Be careful to note that all this is very different than using testers to execute in ro-
bot-like manner the same manual tests again and again… That is rarely done nowadays – or at least
should not be.

3. What does it require to automate tests

Sometimes it is easy to create automation tests. When testing is done at source code level, the de-
velopers can write test code that executes the product’s code just like it would be executed by some
component in the product. That is done especially in “unit testing”, where developers test the source
code that they have written. Similarly, if the application has been written with good testability in mind,
we can in simple test code instruct it to push buttons, insert inputs in form fields and check what
happens as a result of that.

However, that is not always so easy. The first problem is that this relies on mechanisms that happen
“under the surface” – what the tests think is happening might not be quite the same as what really
happens in the user interface, when a user does similar things. For that, we might employ a system
where an external application at higher level more accurately simulates a human user. Here we
again run into practical problems. There still needs to be instruction for how to identify the buttons to
“push” and where to type the inputs. But things change and user interfaces are often changed rapidly
during product development. The tests can soon turn out to be not working anymore and need con-
stant maintenance – effort, time and money.

Often the tests need to be run from another computer. For example, mobile application usually need
to be executed and the execution monitored from a PC and getting access from the PC to the device
and to be able to control the applications can be difficult. It should not be so, but in practice it is.
Sometimes it takes a great effort to build this “adaptation” and connectivity the testing requires.

4. The problems with additional components

Each time we add something additional to the system under test, it is not the same system anymore.
If there is a component that controls the system or monitors it behavior, the behavior will change at
least just a little can sometimes change a lot. The testing systems make the system just a bit slower,
they change the memory configuration and cause new paths of execution to happen. We do not ex-
ecute the system anymore like it would be executed in real use. The term for that is “intrusive test-
ing” – the things needed for testing really intrude the system under test,

 4 (10)

Just as every application always has some defects – this is the basic premise of testing – the testing
components have defects too, causing plenty of extra work in analyzing the observations and finding
the real defects. The main hazard is that the test components may block some read defects and may
not even test the locations in the system under test where they reside.

So what does the testing tell us? It still tells us plenty, but our trust to the findings becomes lower.
We need to complement this “instrumented” testing with other means of testing, such as manual
testing.

So, it would be very nice it we could test a system exactly as it is “from the package” with no external
components, with no debugging tools, with no interfaces to a test control system.

That is exactly what robot assisted testing promises us.

5. …and why robot assisted testing is different

With a robot, we can test a system as purely as possible. We do not need to add anything to it. The
robot is an external observer like a human and just uses its vision to see what state the system is,
then based on it and its test scripts or models, decides what to do next. Checking of the results of
each test is done again by looking at the device to see what has happened.

This is in principle fantastic! We can use the system just as a user would. What we see happening is
the very same thing that would happen if a human would use the system. Everything happens just as
fast or slow as in real life. Every little hiccup results from the system under test and not from some
badly behaving test component.

The more critical the system under test is the more valuable this is. For example in testing safety crit-
ical systems this can be extremely beneficial. When we later in the development cycle do maturity
testing to see how often we run into problems, it is great to have a test arrangement that as closely
as possible mimics the reality. When we run a complex test with a robot for hours, it is much like a
human would use it for ours just looking how long it takes before something goes wrong. However,
human should not be used for that kind of testing.

During-development functional testing, things may not be so simple. Verification of what has really
happened may not be easy from just a user interface – but that is the same situation as in manual
testing. A human tester can more easily sidestep to see for example in the file system what has hap-
pened. The robot can do the same, but it complicates tests more.

Wit robots we have choices! We can have some instrumentation, when needed, but we need to be
careful with that so that the “baby is not thrown away with the bath water”. It is better to leave the
instrumentation to debugging: when we find some anomaly which we do not understand or cannot
trace it to a defect in software, we can for example execute software in a debugger during the robot
run or turn on more logging and other monitoring during a debugging test.

So we still have a whole range of alternatives – and having alternatives and a full “toolbox” to use is
a great thing for good testing.

Because of these characteristics it is easy to think of robot assisted testing as being close to manual
testing, but still there are big differences:

 It can only react to things that have been programmed into it, whereas a human can detect all
kinds of funny things – something wrong in some unrelated area of a display – and immediately
research them further with some ad-hoc exploration.

 5 (10)

 A robot cannot thus do any exploratory testing which relies almost purely on observations and
little on detailed pre-planning. It can only do things based on pre-written scripts.

 If we do not know in detail what should happen when some action is executed, a robot is at loss,
but a human could make deductions from what she sees.

 A robot can also more accurately for example measure timings – a task that is impossible to hu-
mans, who adapt to any slowness rapidly.

 Usability testing is obviously impossible with a robot, because it tests how things work from the
viewpoint of a human.

The scope of this paper is in software testing, but we must not neglect some issues about those
types of hardware testing that are very much related to the applications used.

Consider testing of how long the battery lasts in a mobile device. Clearly, we would like to have a
controlled test arrangement for finding out that. We would also like that there are only such compo-
nents in the device that cause it to use power. That means that we would prefer having as little in-
strumentation in the device as possible. A robot is good at this. We can let it carry out a long test se-
quence – hours or days that simulates user actions. After the battery runs out we are left with good
information about the battery’s performance. If we use a little system monitoring, we will nicely find
out which applications and system software components use most of the battery power and thus can
continue to optimize those if needed.

6. Robots can work around testability problems

Testability is the ability of a system to be tested. For years it has been understood that each new
platform should be developed so that it is easy to control its applications with a test automation sys-
tem, meaning that we can for example execute all UI controls of an application from another applica-
tion. In reality this is often forgotten when systems are bought to market.

In some cases, the testability readiness might exist, but the manufacturer refuses to make the nec-
essary components and tools – or just knowledge -- available that it requires.

Even when these issues are considered carefully and openly, there are problems due to the com-
plexity of the systems. There may be several layers in the user interface, each requiring different in-
terface to access:

 The platform UI technology.

 Special technologies used for some applications or components.

 UI implemented dynamically by scripting in the application, for example by JavaScript.

 Embedded components that sometimes simply cannot be accessed programmatically.

Luckily, a robot requires none of that. It can just open a device and start tapping away, independent-
ly of the implementation technologies!

An additional problem with any testing or debugging subsystems is that of security. Testing interfac-
es introduce new ways for crackers to enter the system and control it – perhaps through a network
connection. That is why it makes sense to keep the systems as closed and controlled as possible.

 6 (10)

7. Speed of starting to test

In today’s hectic business, the speed and ease of getting testing started are essential. In the tradi-
tional world of test automation, a company might need to have a very capable developer spend
some time – that depends on the practical problems that are sure to arise at some point – develop-
ing the adaptation between the test execution system and the system under test. Then come the
problems of accessing all user interface elements from the test scripts.

That is all time that could be spent for doing something more valuable. Of course, all that needs to
be done from scratch only once for a platform (if it cannot be bought from somewhere), and revised
for all platform changes.

With robot testing, the ramp-up can be faster. We have the ability to start reading the screen and
tapping things “straight out of the box”. Still there may be some platform-based preparations to do,
such as teaching the optical character recognition system the platform fonts so that it can detect
texts in the screens. It is much faster and less prone to nasty surprises than instrumented test auto-
mation.

8. What testing robots can and cannot do in software
testing

In Table 1 we list some test types and tasks and their applicability for testing with a robot. The table
is arranged so that the more applicable test types are at the top.

Table 1. Applicability of robot testing to various test types and tasks.

Test type / task Applicability Benefits or problems Notes

In general All the benefits and pitfalls of generic test
automation

A robot test system is needed…

Visible UI testing has maintenance
issues, but also better validity

Device validation
testing (like response
to gestures)

Very good

Impossible by
other means

Accurate, always the same For example how a tablet
responses to basic
gestures – impossible for a
human to test

UI response
measurements

Very good

Impossible by
other means

Accurate, always the same Use in basic validation, but
also to measure that
response times do not get
slower with development
(regression) or in long term
testing

UI-level functional
testing

Very good Does not require instrumentation /
internal adaptation – better validity

Tests what the human user sees and can
do

Testing of multiple UI languages and UI
themes will cause more work

Device orientation changes and such
require more advanced (expensive)
robots

May use scripts or model-
based testing; even
monkey testing, but
exploratory testing is
obviously impossible

 7 (10)

Test type / task Applicability Benefits or problems Notes

UI-level testing of
safety critical
systems

Very good -- “ –

Does not replace testing by humans, but
may give a good “technical baseline” with
good functional coverage

One must not get fooled
with the coverage
numbers; they are reached
with quite mechanical
actions

Long term UI testing /
maturity testing

Very good Similar to instrumented tests, but more
accurate measurements possible

Device performance
testing (UI level)

Yes Can be much faster than human in work
with an UI and doesn’t get tired

Compatibility testing Yes Obviously a robot could test for example
with several devices, but currently all the
setup makes it impractical and software-
based testing in a device farm is more
practical

Mechanical assistant
for instrumented tests

Yes Of course, a robot could just be an
“assistant” in tests that are done fully in
software. It could turn the devices, initiate
their sensors, push buttons, remove
memory card or charger plug etc.

These are all things that a
human should not be doing

Usability testing No / low A robot does not have a human mind

Can detect low-level problems with
controls though (hitting buttons, icon
differentiation)

Mostly should have a
functional testing / control
validation goal and not
confuse with usability
testing

User experience
testing

No A robot does not have a human mind or
culture

Business process
testing

See UI-level
functional testing

Security testing No / Weak This needs a human expert tester

Information system
performance / stress
testing

No Some manual testing
should be done while the
scripts are running, but
humans should do that, as
it is needed for even weak
signals and holistic
observation

Unit testing & low
level integration
testing

No These are done by
developers with “under the
hood” testing tools

 8 (10)

9. Conclusions

The robot assisted test automation clearly provides many benefits, such as having no need for in-
strumentation and the ability to test a system exactly as it is configured for production use. This pro-
vides remarkable benefits for many kinds of testing. Compared to instrumented test automation,
these benefits are essential:

 More realism to testing and therefore more trustworthy results.

 Less work for testing arrangements, creation and maintaining of testing tools and scripts. This
saves money and work.

 A better simulation of the user, thus better testing of user interfaces.

 More real-life like platform for device measurements, resulting in more accurate measurements.

 No need to compromise security because of testing interfaces. This is very valuable for manag-
ing security risks with mobile devices,

Yet, robot assisted testing is only done at the user interface level and obviously cannot replace test
automation at lower abstraction levels – “under the hood” of the system under test. And it cannot re-
place many types of human testing.

There never are any silver bullets in testing, all testing technologies just add to the available toolset
that can be used in testing, giving us the means to do richer testing and select the most suitable test-
ing techniques for any testing task.

 9 (10)

APPENDIX 1: Applicability of various types of test automation

Applicability of test automation types and levels

Automatic

General ly good for

Testing things that can be defined formally

When need to make accurate measurements

When need to monitor internal ly

When need to monitor test coverage for a testing phase

Simple positive tests

Test that don't need human evaluation

Routine tests

When need to have good coverage Model-based testing

Long test runs

Repeating tests At least 5 times to be worth autiomation

UI-level

Robot-assisted

Instrumentation driven testing difficult
Bitmapped UI

Bad API access

Non-instrumentation preferred

Instrumentation only as needed for debugginh etc.

Release testing

Performance testing

V&V of safety-critical

Instrumented UI-level (UI-API preferred)

Testing of local ized versions (access by ID)

Compatibi l i ty testing

Functional testing

API-level

Performance testing

Database testing

Protocol testing

Security testing

Regression testing

Functional testing

Integration testing

Unit testing

Manual Good for

Preparation for automation Manual tests first

When the goal is learning

When need to concentrate
Human intel l igences

Quali ty of test cases more than coverage

Performance testing With tool support

Localization testing

Functional testing
Scripted testing

Stable environment

Difficult to automate

Need human evaluation

Exploratory testing

Usabil i ty testing

Agile testing of new features

 10 (10)

APPENDIX 2: Issues around robot assisted UI testing

Is
s

u
e

s
 a

ro
u

n
d

 r
o

b
o

t-
a

s
s

is
te

d
 U

I
te

s
ti

n
g

S
y
st

e
m

s
a

p
p

ro
a

c
h

O
p

e
n

 t
e

c
h

n
o

lo
g

y

O
p

e
n

 h
a

rd
w

a
re

 s
p

e
c
if

ic
a

ti
o

n
s

O
p

e
n

 s
o

u
rc

e

O
p

e
n

 A
P

I'
s

O
p

e
n

 s
ta

n
d

a
rd

s

C
h

o
ic

e
 o

f
M

B
T

 t
o

o
ls

T
e

st
 g

e
n

e
ra

ti
o

n

M
o

d
e

ll
in

g

F
re

e
d

o
m

 t
o

 s
e

le
c
t

sy
st

e
m

 c
o

m
p

o
n

e
n

ts

M
o

d
u

la
ri

ty
R

o
b

o
t,

 c
a

m
e

ra
,

te
st

in
g

 t
o

o
ls

,
m

o
n

it
o

ri
n

g
..

.

F
o

r
a

n
y
 n

e
w

 t
e

st
in

g
 t

e
c
h

n
o

lo
g

y

J
u

st
 a

u
to

m
a

ti
o

n
 d

o
e

s
n

o
t

h
e

lp
N

o
t

e
v
e

ry
th

in
g

 w
il

l
b

e
 a

u
to

m
a

te
d

N
e

e
d

 g
o

o
d

 u
se

 /
 t

e
st

 c
a

se
s

M
u

st
 b

e
 w

a
ry

 o
f

h
y
p

e

Q
u

a
li

ty
 o

f
te

st
in

g
 m

u
st

 b
e

 a
ss

e
ss

e
d

M
u

st
 f

in
d

 i
ts

 r
o

le
 i

n
 t

h
e

 o
v
e

ra
ll

 p
ic

tu
re

T
o

o
ls

 n
e

e
d

 d
e

v
e

lo
p

in
g

N
e

e
d

s
u

n
d

e
rs

ta
n

d
in

g

C
h

a
ll

e
n

g
e

s

W
o

rk
p

la
c
e

 a
rr

a
n

g
e

m
e

n
ts

L
o

c
a

ti
o

n
 i

n
 d

e
v
e

lo
p

m
e

n
t

te
a

m
 r

o
o

m
N

o
is

e
,

v
is

u
a

l
d

is
tr

a
ti

o
n

U
se

 f
o

r
p

la
y
 -

 g
e

t
a

n
o

th
e

r
ro

b
o

t

A
ss

u
ri

n
g

 s
a

fe
ty

 a
n

d
 s

e
c
u

ri
ty

R
o

o
m

 f
o

r
a

 r
o

b
o

t
w

o
rk

st
a

ti
o

n

T
e

st
 s

y
st

e
m

s

A
c
c
e

ss
ib

il
it

y
 i

ss
u

e
s

T
e

st
 l

a
b

o
ra

to
ry

 a
v
a

il
a

b
il

it
y

R
e

m
o

te
 u

se

N
o

 s
ta

n
d

a
rd

 A
P

Is

F
le

x
ib

le
,

fa
st

 t
e

st
in

g
 t

o
o

ls
U

n
d

e
r

d
e

v
e

lo
p

m
e

n
t

A
v
a

il
a

b
il

it
y

N
o

t
fo

r
e

v
e

ry
 t

e
a

m
,

d
e

v
e

lo
p

e
r,

 t
e

st
e

r

C
o

st
L

o
w

 c
o

m
p

e
ti

ti
o

n
 i

n
 m

a
rk

e
t

T
e

st
 s

y
st

e
m

s
e

x
p

e
n

si
v
e

T
e

st
in

g

T
e

st
in

g
 o

f
te

st
s

L
o

w
 c

o
st

 r
o

b
o

ts
 f

o
r

te
st

 d
e

si
g

n

E
m

u
la

ti
o

n
 o

f
R

o
b

o
t

A
v
a

il
a

b
il

it
y
 o

f
ro

b
o

t
te

st
 s

ta
ti

o
n

s

R
e

c
o

v
e

ra
b

il
it

y
 i

n
 l

o
n

g
 t

e
st

 r
u

n
s

R
e

q
u

ir
e

s
M

B
T

 f
o

r
b

e
st

 b
e

n
e

fi
ts

L
in

e
a

r
sc

ri
p

ts
 o

f
lo

w
 v

a
lu

e

R
o

o
t

c
a

u
se

 a
n

a
ly

si
s

T
e

st
 l

o
g

g
in

g
 e

tc
.

st
il

l
n

e
e

d
 r

o
o

mM
a

y
 r

e
d

u
c
e

 m
a

n
u

a
l

te
st

in
g

D
o

e
s

n
o

t
te

st
 u

sa
b

il
it

y

H
u

m
a

n
 e

y
e

 s
ti

ll
 n

e
e

d
e

d

S
U

T
 i

ss
u

e
s

D
e

v
ic

e
 c

o
n

tr
o

l

T
il

ti
n

g

O
ri

e
n

ta
ti

o
n

 c
h

a
n

g
e

s

S
le

e
p

 m
o

d
e

s

N
e

w
 U

I
ty

p
e

s
L

iv
e

 U
Is

N
o

n
-t

o
u

c
h

in
g

 g
e

st
u

re
s

B
e

n
e

fi
ts

In
d

ir
e

c
t

G
iv

e
s

m
o

re
 e

m
p

h
a

si
s

to
 h

ig
h

 l
e

v
e

l
te

st
in

g

G
o

o
d

 r
o

b
o

t-
te

st
a

b
il

it
y
 m

a
y
 i

m
p

ro
v
e

 u
sa

b
il

it
y

R
e

c
o

g
n

a
z
ib

le
 e

le
m

e
n

ts

S
ta

b
le

 d
is

p
la

y
s

In
te

re
st

R
o

b
o

ts
 m

a
ke

 p
e

o
p

le
 i

n
te

re
st

e
d

 i
n

 t
e

st
in

g

R
o

b
o

ts
 a

re
 "

m
o

d
e

rn
"

E
v
e

ry
b

o
d

y
 l

o
v
e

s
ro

b
o

ts

D
ir

e
c
t

H
ig

h
 a

b
st

ra
c
ti

o
n

 l
e

v
e

l

Im
p

le
m

e
n

ta
ti

o
n

 t
e

c
h

n
o

lo
g

y
 i

n
d

e
p

e
n

d
e

n
t

H
/w

 a
n

d
 s

/w

T
e

st
 o

v
e

ra
ll

 s
y
st

e
m

T
e

c
h

n
o

lo
g

y
 i

n
d

e
p

e
n

d
e

n
c
e

A
n

y
 G

U
I

A
n

y
 m

a
n

u
fa

c
tu

re
r

/
v
a

ri
a

n
t

A
n

y
 O

S

A
n

y
 p

la
tf

o
rm

"N
a

tu
ra

l
te

st
a

b
il

it
y
"

C
a

n
 p

in
p

o
in

t
sm

a
ll

 d
e

v
ia

ti
o

n
s

e
a

rl
y
 o

n
D

is
p

la
y
 p

ro
b

le
m

s

D
e

v
ia

ti
o

n
s

in
 s

p
e

e
d

N
o

n
-i

n
tr

u
si

v
e

T
e

st
s

n
o

t
a

ff
e

c
te

d
 b

y
 i

n
st

ru
m

e
n

ta
ti

o
n

G
o

o
d

 f
o

r
v
a

li
d

a
ti

o
n

 t
e

st
in

g

P
u

re
 u

se
r

e
x
p

e
ri

e
n

c
e

 u
n

d
e

r
te

st

T
e

st
 t

y
p

e
s

U
I

p
e

rf
o

rm
a

n
c
e

 t
e

st
in

g
L

a
te

n
c
ie

s

S
p

e
e

d

R
e

g
re

ss
io

n
 t

e
st

in
g

S
y
st

e
m

 l
e

v
e

l
fu

n
c
ti

o
n

a
l

te
st

in
g

M
a

tu
ri

ty
 /

 r
e

li
a

b
il

it
y
 t

e
st

in
g

G
e

n
e

ra
l

kn
o

w
le

d
g

e
 o

f
p

o
ss

ib
il

it
ie

s

In
 t

e
st

in
g

 c
u

lt
u

re
 /

 c
o

m
m

u
n

it
y

In
d

u
st

ry
 c

a
se

 s
tu

d
ie

s

C
o

n
fe

re
n

c
e

s

S
e

m
in

a
rs

A
re

 t
h

e
y
 a

n
y
 g

o
o

d
?

S
c
ie

n
ti

fi
c
 r

e
se

a
rc

h
C

o
m

p
a

ri
so

n
 w

it
h

 o
th

e
r

a
p

p
ro

a
c
h

e
s

S
h

a
re

d
 e

x
p

e
ri

e
n

c
e

s

In
 e

d
u

c
a

ti
o

n
U

se
 i

n
 c

o
u

rs
e

s

V
is

it
in

g
 l

e
c
tu

re
s

D
e

m
o

n
st

ra
ti

o
n

s

C
o

u
rs

e
 p

ro
je

c
ts

S
tu

d
e

n
ts

 l
o

v
e

 r
o

b
o

ts

W
h

e
re

 t
o

 g
e

t
th

e
m

?
W

h
a

t
ki

n
d

 o
f

te
st

 s
y
st

e
m

 w
e

 n
e

e
d

R
e

li
a

b
il

it
y

F
e

a
tu

re
s

W
h

o
 c

a
n

 d
e

li
v
e

r

W
h

e
re

 t
o

 u
se

 t
h

e
m

?

B
e

n
e

fi
ts

 a
n

d
 p

it
fa

ll
s

In
 t

e
st

 p
ro

c
e

ss
e

s

T
e

st
 t

y
p

e
s

T
o

o
l

se
le

c
to

rs

P
ro

d
u

c
t

d
e

v
e

lo
p

m
e

n
t

Q
/A

 d
ir

e
c
to

rs

T
e

st
 m

a
n

a
g

e
rs

In
fl

u
e

n
ti

a
l

te
st

e
rs

