
Guidance to selecting

technologies for project

Matti Vuori

18.2.2015

Contents

Introduction 3

First note 4

General strategies 5

Evaluate alternatives 9

Practical testing 13

Open source components 14

Introduction

• This is a short intro to the question of how to

select technologies to you project.

• Those include programming languages,

libraries and so on.

07/05/2015 3(15)

First note

• The idea on the course is not to reinvent the

wheel but produce as solid implementations

for the customer as possible

• So using libraries and (free) components is a

good idea

• Spend to coding effort to doing the unique

things!

07/05/2015 4(15)

General strategies 1/4

• Don't automatically use the latest hyped thing, it might

not be the best for you.

• Use only something that several of you already know

and can use – time in project has better uses that

learning a new language, and what if the one who is

proficient get sick?

• Think of what could be good for the customer.

07/05/2015 5(15)

General strategies 2/4

• If you wish to create a community, find out what most

people use, so it is easier for others to step in.

• To reduce hassle, keep the number of components small

– this is related to managing the scope of product: there

is only so little that can be done during the project.

• Think of licenses and costs – there are open source

components for almost anything.

07/05/2015 6(15)

General strategies 3/4

• Have a consensus for choices – don't let anyone

dominate.

• Evaluate alternatives (more about this later).

• Be prepared for problems though: your implementation

may be an unique use case that a component has not

been used for. In that case it is good to have open

source components that you can fix yourself.

07/05/2015 7(15)

General strategies 4/4

• Anyway: don't trust anything, test everything that you do

properly whether you made a component yourself or

used an existing one.

• Include component issues in the risk analysis and be

ready to make changes if there are problems.

07/05/2015 8(15)

Evaluate alternatives 1/4

• Technical issues: Suitability to your need, maturity,

availability of tools and libraries and support: are there

good forums where you can find help.

• Product quality: Will the technology product reliability,

security, usability & other things that the users may

wish? Security is critical. Check for security problems

and also how fast they (if any) have been corrected in

the past. Be paranoid!

07/05/2015 9(15)

Evaluate alternatives 2/4

• See if you will find advice and problem reports in the net.

Check the bug databases of alternatives.

• See if the community behind a component is alive

– Don't use a dead or dying project or something that others

are moving away from.

• Think of platform support. You may now think of for

example one mobile platform, but what if you want to

support something else. Consider what the potential

users are using now and later.

• Development performance: How productive working with

the technology is; does everyone like (preferably love) it?

07/05/2015 10(15)

Evaluate alternatives 3/4

• Testability.

– Can you test the component with common tools?

– Are there testing tools for a platform or language?

– Automated testing tools are often needed for continuous

integration tests and tests during deployment.

• In choosing a language, think of how easily you can use

with it things done in other languages.

07/05/2015 11(15)

Evaluate alternatives 4/4

• As you want to be agile, think of how simple and easy it

is to change the implementation when your ideas

change. This helps not only during this project, but later

on, if the development continues.

• Think of changeability of the whole component if the

component turns out not so good (also make your

architecture so that changing is easy).

07/05/2015 12(15)

Practical testing

• Do a little implementation in all relevant alternatives and

see how it goes. Ideally, some of you have already used

the technology for something non-trivial.

• Test the critical features that you are dependent on.

• Assign the practical evaluation to someone as a clear

task with resources.

07/05/2015 13(15)

Open source components

1/2

• Check the licenses and other IPR issues.

– That you can utilise the component as you wish and that a

restricted license does to attach to your code. There is a

separate slide set about those.

• Start listing the components and licenses early on to

prevent problems.

• Consider licenses for testing components too, if you wish

to distribute them.

07/05/2015 14(15)

Open source components

2/2

• About open source licenses:

• http://opensource.org/licenses/category

• Comparison of licenses:

• http://en.wikipedia.org/wiki/Comparison_of_free_and_op

en-source_software_licenses

• This is a good read (In Finnish, though):

• "Matti Saastamoinen: Avoimen lähdekoodin lisenssit

kaupallisessa liiketoiminnassa" (Open source licenses in

commercial business)

• https://tampub.uta.fi/bitstream/handle/10024/93510/grad

u01157.pdf?sequence=1
07/05/2015 15(15)

http://opensource.org/licenses/category
http://en.wikipedia.org/wiki/Comparison_of_free_and_open-source_software_licenses
http://en.wikipedia.org/wiki/Comparison_of_free_and_open-source_software_licenses
http://en.wikipedia.org/wiki/Comparison_of_free_and_open-source_software_licenses
http://en.wikipedia.org/wiki/Comparison_of_free_and_open-source_software_licenses
https://tampub.uta.fi/bitstream/handle/10024/93510/gradu01157.pdf?sequence=1
https://tampub.uta.fi/bitstream/handle/10024/93510/gradu01157.pdf?sequence=1

