

ATAC

Model-based testing in modern agile software development

– How to integrate it into the development process?

Project number: ITEA 2 10037

Edited by: Matti Vuori, TUT

Date: 2014/03/18

Document version no.: 1.0

Page 2 of 14

Table of Contents

1. Introduction ... 3

2. Role of MBT in development of various systems .. 3

3. Obstacles and attractions of MBT .. 5

4. Mapping MBT activities to agile development ... 7

4.1. Stereotypical agile process .. 7

4.2. Overview of testing in agile development process .. 8

4.3. Allocation of MBT work inside and outside team ... 9

4.4. Main principles of agile test modelling .. 9

4.5. MBT in process phases of agile development ... 10

4.5.1. Start-up activities .. 10

4.5.2. MBT in testing of a new development item (feature, story) ... 11

4.5.3. Tests for the whole system .. 11

4.6. MBT as a tool to aid team’s understanding of the system ... 12

4.7. Definition of “done” and metrics .. 13

4.8. MBT tool considerations ... 13

4.9. Testware management ... 14

4.10. Testware quality management and quality assurance ... 14

4.11. Making it visual and fun .. 14

4.12. Considerations for robot-assisted testing in agile .. 14

4.13. New competences for tester ... 14

5. References .. 14

Page 3 of 14



1. Introduction

As we try to bring model-based testing (MBT) to the mainstream, we need to more address the
issues of integrating the tasks and practices of MBT into the real-life systems development
practices. Here, we try to provide some rough descriptions and principles for it. The goal is to share
an overview of the issues so that tool and process developers can take the right things into
consideration.

This report mostly includes process-related issues and for example, competence-related issues are
left out for now.

Nowadays it is often assessed that testing in agile development is quite developer-centric and low
level. There is a need to emphasise system level testing more. That itself brings changes to the
approaches of testing. Some of the things that we document here are caused by the fact that MBT
is usually “heavy” system level testing. But above and besides that, it has some unique practices
that need extra consideration. Some of them may have equivalents in traditional test automation,
but even then we need to map them into the processes using their concrete names.

Note that the descriptions of the practices are somewhat simplified and do not cover all variations –
they just aim to point out the essential principles.

As attachment we have included mind-maps that present many attractions and obstacles to MBT.
Most of them are generic and apply to many development paradigms, but some relate closely to
agile. In the report we will look into some of those.

2. Role of MBT in development of various systems

MBT doesn’t need to be a do-it-all methodology. For various domains it can have a targeted
purpose, which of course doesn’t need to be definitive and restrictive. But it gives guidance about
where to start and where to emphasise MBT. We like to see testing as a rich activity where there
are many (but not too many) approaches that complement each other. That means that even when
MBT is heavily used, there is room for other kinds of test automation, not to mention manual
testing.

In Table 1. we present some rough ideas about the role of MBT in various domains.

Page 4 of 14

Table 1. Role of MBT in various domains

 Machine
control systems

Industrial
automation

Communication
infrastructure

Mobile device
app suites

Business
information
systems

Web
applications

Description Control
systems such
as in work
machines,
tractors.

Automation for
e.g. process
plants.

Network
systems,
protocols

Suites and
single apps
for phones
and tablets.

Serious
information
systems used
in
management,
governance.

Individual
web
applications.

Essential Safety critical,
high
robustness.
Software and
hardware under
test.

Safety critical,
high
robustness.
Software and
hardware under
test.

Reliability
critical, high
robustness.
Software and
hardware
under test.

Priorities vary
highly. App
interaction.

Business
critical.
System
integration.

(Varies)

Low level
design

Systematic.
Interaction
diagrams, state
machines.

Systematic.
Interaction
diagrams, state
machines.

Systematic.
Interaction
diagrams, state
machines.
Standards and
specifications
based.

Adhoc. No
modeling.

Adhoc. No
modeling.

Adhoc,
platform
templates.
No
modeling.

High level
design

Requirements-
based.
Architecture-
driven. V-
model.

Requirements-
based.
Architecture-
driven. V-
model.

Requirements-
based.
Architecture-
driven.

UX-driven.
Agile.

Business
process,
business
requirements
driven.

Agile. UX-
driven.

V&V Standards
important.
Many levels
(overall system,
hw, electronics,
sw). Formal
verification has
a role.

Standards
important.
Many levels
(overall system,
hw, electronics,
sw). Formal
verification has
a role.

Standards
important.
Many levels
(overall
system, hw,
electronics,
sw). Formal
verification has
a role.

Internal
standards.
Platform
requirements.
Traditional
sw testing.

Traditional sw
testing. High
test levels
emphasised
and
systematic
(system,
acceptance).

Traditional
sw testing.

Existing
modeling

System
architecture.
Component
state machines.
Interactivity
diagrams. Fault
trees. FMEA.
Use cases.

System
architecture.
Logic
diagrams.
Interactivity
diagrams.
FMEA. Use
cases.

System
architecture.
Protocol
stacks. State
machines.
Interactivity
diagrams.
FMEA. Use
cases.

User stories. Business
process
models
(flows). Use
cases.

User stories.

Existing
modeling
skills

Engineers
(good).

Engineers
(good).

Engineers
(good).

Sw
developers
(varies)

Architects
(good)

Sw
developers
(varies)

Mandatory
reqs for
modeling

Safety
standards.
Revieability.

Safety
standards.
Revieability.

? (None) (None) (None)

Page 5 of 14

 Machine
control systems

Industrial
automation

Communication
infrastructure

Mobile device
app suites

Business
information
systems

Web
applications

Mandatory
reqs for
testing

Safety
standards.
Revieability.
Traceability.
Documentation.

Safety
standards.
Revieability.
Traceability.
Documentation.

Meeting
standards'
requirements.

Platform
owner / store
requirements.

(None) (None)

Good
features for
modeling

Management of
complexity.

Management of
complexity.
Reuseability
with templating.

Completeness,
detail.
Automatic test
generation
from protocols.

UX-driven.
Fast.
Reuseability.

Business
process -
driven.

UX-driven.
Fast.

MBT SWOT

Strengths Cultural
compatibility.
Perceived
benefits.
Mature culture
for QA.

Cultural
compatibility.
Perceived
benefits. May
be mandatory.
Mature culture
for QA.

Cultural
compatibility.
Perceived
benefits.
Mature culture
for QA.

Perceived
befefits to
testing
interactions.

? Versatile
culture, open
for new
ideas.

Weaknesses Tool adaptation
still underway.

Tool adaptation
still underway.

Done already. Fast
development,
product
changes.

No clear point
of utilisation.
Needs
research and
tool
development.

No clear
need for it.
No good
examples.
Needs
resources.
Needs
systematic
action.

Threats Need
compatibility
with dev. tools

Need
compatibility
with dev. tools

(None) Must have
integration in
development
environments.

Even
traditional
testing
weak.

Opportunities Simple tools for
divided testing
tasks.

Simple tools for
divided testing
tasks.

? Long term
testing. User
story based
modeling.

Test
creationg
from business
process
models. Use
case testing.

Automatic UI
testing.

Key MBT
selling point

Use MBT to
manage risks

Use MBT to
optimize
realiability

Use MBT to
optimize
realiability

Use MBT to
validate that
your app
suite really
works after
changes

Use MBT to
validate
reliability of
transactions

Use MBT to
test user
stories
automatically

3. Obstacles and attractions of MBT

In Figure 1 and Figure 2 we present mind-maps that present many attractions and obstacles to
MBT.

Page 6 of 14

Attractions of MBT

Potential for visualization

Depends on tools used...

Showing customer and others how sw is torturedMarketing

Visual display to team of how the sw is torturedMoral boost

Simplici ty
Getting rid of test cases

High abstraction level

Better test automation

Automation that can actual ly find new bugs

Low maintenance tests

Long duration testing

Great coverage Low maintenance
High abstraction level responds to changes

Maintain models, not low-level test case detai ls

Requirements for testing

Complexities of protocol testing and similar

Maturity for global products and platforms

Safety-cri tical domains may requireSafety standards

New, modern method New must be good!

Figure 1. Attractions of MBT.

Obstacles of MBT

Fit to agi le culture

Is modeling "waste" that slows and consumes

Modeling not in fashion

Special ist thing Agile prefers generic, shared

People

Skil ls and understanding Not many know how to do i t

More people? More costs

More roles More complexity to team

Fears

Risks to first projectsNeed val idation and proofWhere to find time to pi lot?

Suspicion of automationDoes i t real ly work? Wil l the tests be any good

MBT not integrated to fast workflows

Slow modeling

Tools

Expensive

Immature

Exotic

Complex

Economy

Sponsor for the change?

Cost of the change

Cost of making mistakes

Building infrastructure

Getting tools

Planning

Return of investment Wil l i t pay off?

New things require more work

Motivation

Can't even do current practices that well

Lacking perceived need in testing
MBT may not replace old practices

Old ways are good enough

Real success stories are few

Arrangements

Need time and consultants to start

Reporting and proof of good testingMetrics need development

Testware configuration management

Need to assemble toolchains

Need to change

Changes to test design phi losophy
No l inear chain from stories' flow to tests

New mindset

Competence development

Acquiring new tools

New practices to processes

New roles in testing

Figure 2. Obstacles of MBT.

Most of the attractions and obstacles are generic and apply to many development paradigms, but
some relate closely to agile.

Some very interesting are the general approaches in agile:

 There is a tendency in agile to use generic methods that everyone can do. Just think about the

lack of proper architecture and usability design in agile. MBT is not quite that, but with simple

tools it can get closer.

 There is a negative relation towards modeling. After the demise of waterfall and RUP, people

still have a “hangover” from modeling. It can be seen as “waste”, documentation that doesn’t

provide value. Of course in MBT it is the very thing that provides value. But this is something

that needs to be remembered.

Page 7 of 14

 Still, agile aims to be fast and efficient and there are still too many stories of modeling having

taken days. For that we need to emphasize incremental modeling that doesn’t need to be

waited for and good, fast tools.

4. Mapping MBT activities to agile development

4.1. Stereotypical agile process

There are many project models, but usually they are based on some cyclic process flow in which
new versions of the system are created periodically. In this dissertation we want to use a specific
process model such as Scrum as basis of this analysis, as specific models tie our analysis
unnecessarily to their highly specialised details – and because in any case the specific process
should preferably always be tailored to specific circumstances anyway.

Our simplified model (see Figure 3) has the following elements:

 Process flow.

 Startup activities. Pre-development tasks that are done before the increments – concepting
work, etc.

 A series of increments, adding more features or otherwise more value. (Note: in some
processes these recurring process phases are referred to as "iteration". We use the term
increment here to avoid confusion. Inside the increments there will be plenty of iteration, as
designs evolve through their analysis and we must not confuse that with the process phases.)

 A rhythmic series of releases, at the end of one or more increments. Not all increments need
to produce releases and thus the need for results of the increments to be safe, or validated to
be safe, varies.

 The releasing increments produce releases directly to the customer or production, or release
candidates for additional internal processing (to be passed through required, for example,
product management processes).

 Closure activities. Post-development tasks that are done after the increments.

 On-going activities, such as testing and safety tasks that are carried outside the increment
model.

 Management and control processes that are outside the series of increments.

 Practices, related to, for example, integration and testing.

Page 8 of 14

Figure 3. The basic agile process.

4.2. Overview of testing in agile development process

Overall flow of testing of a new feature / story:

 The implementation in planned and necessary testing planned .

 The developer creates the implementation and does unit testing.

 During integration (usually with continuous integration) the new implementation is put though to

additional tests. This is mostly low-level integration testing, but can include running automated

UI level tests.

 A tester does “system” testing often through UI. This is mostly functional testing.

 Automated tests are created mostly for regression testing of the feature later.

Testing of the whole:

 Manual exploratory testing.

 Automated tests during integration.

 Performance tests at various points of the project, sometimes automated for some builds.

 Usability assessments for the whole application, so the new UI’s are in context and in

interaction with others.

 Maturity testing when aiming for releases.

Start-up
activities

Closure
activities

Increment Increment Increment

Release
(candidate) N

Control and monitoring

Product management or other super process

Page 9 of 14

4.3. Allocation of MBT work inside and outside team

There have been some work allocation models where modelling and even test execution has been
provided as external service. If we aim for integration of MBT into the agile process and team, most
of the work needs to be done inside the team, as it requires communication, collaboration and
iteration.

There may be are some tasks related to the release process where tasks can be carried out
outside the development team, such as testing related to high level system integration, long term
maturity tests, safety validation tests and similar.

4.4. Main principles of agile test modelling

Ambler (2002, p. 27) gives these core principles for agile modelling of software in agile
development.

 Software is your primary goal.

 Enabling the next effort is your secondary goal.

 Travel light.

 Assume simplicity.

 Embrace change.

 Incremental change.

 Model with a purpose.

 Multiple models.

 Quality work.

 Rapid feedback.

 Maximize stakeholder investment.

Here, we reflect on those from test modelling and derive from them some hypothetical principles for
agile test modelling.

 Good testing is your primary goal. The goal is not to make models, but create good testing.

 Model for today.. The modeling should be targeted for the current implementation, not much as

a platform for other. One must be able to make changes to any direction.

 Travel light. This means creating just as much of models that you can get by. Enough is the

optimum.

 Go for simplicity. Just as for the application, simplicity is a virtue for the test models too. The

simplest a model can be, the easier it is to understand, to maintain.

 Embrace change. The MBT tester must be positive towards change. The application will change

and so will (should) the models as we learn more of the evolving system.

 Develop and change models incrementally. Don’t change everything at once. Start with simple

models and keep the models working when you change them.

 Model with a purpose. Each test model should have a clear purpose in testing. Model for that.

Generic “all-purpose modeling” has low value.

 Multiple models. Models look into the system at some perspective. The more perspectives we

have, the better we can find defects.

 Quality work. Make the model professionally. Make models that are well crafted, robust and

sufficiently documented and managed.

 Rapid feedback to developers. Testing in agile development needs to provide rapid feedback.

Page 10 of 14

For that, modeling must be fast and tests need to get running fast. For that, start with simple

models of most essential issues, test with those, and continue with more modeling and other

executing strategies after that.

 Maximize stakeholder investment. This applies to all testing. With all work that you do, give

maximum value to stakeholders. Provide by testing the most important information that the

stakeholders need now.

4.5. MBT in process phases of agile development

4.5.1. Start-up activities

When the development process starts, some preparation is required:

 Selection of tools – if there are alternatives.

 Planning of the usage of MBT in the process. Just getting the shared idea for what is expected.

Concise Master Test Plan is a good idea. Make everyone understand what is tested manually,

what with traditional test automation tools and what with the MBT tools.

 Discuss testability. MBT (and other testing too) requires good testability. Make sure that

everyone understands the implications for, for example, UI techniques.

 Plan the adaptation. Find and select an existing adapter or start building one. In the latter case,

the adapter can be built incrementally as the project proceeds. Make sure there are resources

for that.

Page 11 of 14

4.5.2. MBT in testing of a new development item (feature, story)

Figure 4. MBT in testing of a new development item (feature, story).

4.5.3. Tests for the whole system

Basic low level integration testing

This is the traditional low-level integration of system components, such as classes and similar –
and in particular, integration of code written by and changed by several developers. In that, the
main tests are traditional unit tests written using a unit test framework. MBT has usually no role in
that, except for fast (system level) smoke tests run at the same time.

Separate system tests that span various functionalities

This is a level of testing above the feature / story tests. Here we collect many test models to run a
quite comprehensive suite of tests. This is usually done within the team, by a test engineer. Tests

Create a
model

Update other
models for
new
interaction &
revise
adapter if
needed

User story,
feature
description
or other

When code is
implemented,
run tests

Test analysis
for critical
issues to test
and model

Find bugs

Add models
to library &
document

Developer
fixes bugs

Version
control

Version
control

Use execution
strategies for
thorough testing.
Complement with
exploratory
testing

Collaboration
within team and
others

1) Alone, 2) with
developer, or 3)
in small team

Page 12 of 14

will bring out defects in the models and in the adaptation, so the person executing the tests should
ideally be able to make the corrections or have someone in the team as a pair to do that.

Regression tests at least daily (depending on the volume of development)

This usually should be done inside the team. The models used should be created during the
incremental development of test models, as well as any specifications for the test runs and the
configuring of the models.

Performance testing

Performance tests should be run as early as possible. That means that the system will be quite
immature at that point. Because of that, carefully written linear test cases actually make sense.
Model-based tests can cause problems to the test runs! Still. carefully selected model-based tests
might give more realistic performance information. That requires test models tailored for
performance testing and carefully selected test execution strategy.

Longer term maturity tests

These may be carried out by a separate team or in the team during a stabilization sprint. MBT is
very suitable for this kind of testing.

Things to note:

 The QA team should need to do minimal modeling or model management.

 Regression test suite can be a good candidate – the models are suitably simple.

 A suitable test execution strategy (coverage criteria) needs to be selected.

Customer acceptance tests

There are two types of those. In the agile culture simple acceptance tests are often used in which it
is checked that the new functionality works the way the customer or product owned expects.
Manual testing or traditional test automation really is sufficient for that, or rapid modelling can be
used. Still, this is about communication and any means for that need to be as simple as possible.

But the problem here is that those really are not proper acceptance tests. There are no real users
involved, just people representing them. Good acceptance tests need to be done by the customers
in their own environment. Test automation and especially MBT should not have much role in that.
They belong to the system testing level.

4.6. MBT as a tool to aid team’s understanding of the system

MBT is a great paradigm for visualising how the system “works”. Usually the developers do not use
any modelling tools but use linear “coding” as means of implementation. Of course, the user stories
and similar provide high-level descriptions of the desired behaviour and value to the user or
customer, but there is still room for more viewpoints. And the views that MBT provides can be such.

To make the collective learning potential materialise, obviously collaboration is required. That
means creating the models together with some developer (who is implementing the feature in
question), or in a small team of people.

That way, people can:

 Discuss, what is important for the value of the system.

 Discuss, how the critical things are supposed to behave.

 Create simple models and reflect each other’s understanding of the behavior.

Page 13 of 14

And after some testing, look together at the findings and learn from all that.

4.7. Definition of “done” and metrics

“Done” means that a new implementation is also tested. That is very clear to anyone and sufficient
for team’s use. One piece at a time becomes “done” and the coverage of testing integrates to the
coverage of implementation. But there is more to “done” than that: Special issues for MBT include
these:

 A story [or other] is modelled. The model is sufficiently documented and stored in version

control to a model library or other testware storage.

 Any related models (other stories, features, applications) are updated.

 Adapter changes have been made.

 Tests have been run and passed [at chosen target quality level] and defects reported. There are

no critical level or highest priority defects.

 Any small MBT tests to run automatically during builds are added to the continuous integration

engine’s scripts.

 Regression testing suites have been updated.

Still, other metrics are required for assessing the whole system. Mostly, in MBT, they are
concerned with coverage:

 State and transition coverage.

 Use case coverage.

 Application component / functionality coverage.

Of course, the testing can also report code coverage. When the testing is done in the development
team, it is easy to create builds that contain instrumentation for code coverage measurement. But
this also means that the versions under test will not be versions targeted for production and thus
the code coverage measurements need to be used with care. The possible side effects also
depend on the system under test.

All these need to be combined from all test types – other test automation and manual testing
(including exploratory testing). The goal must be monitoring how well the system has been tested,
not how much any particular testing method has tested it.

4.8. MBT tool considerations

Because agile is a team effort, it is advisable to have testing technologies reasonably generic so
that more than one person can participate in any effort without much training. That applies for
example any languages used by the tools – rare, specialised testing languages (such as TTCN-3)
should be avoided and preference should be given to the languages used in the implementation of
the application, or generic, often used languages, such as Python.

Page 14 of 14

4.9. Testware management

Version control system has a very important role.

MBT artefacts need to be stored in standard version control too:

 Often in a special directory “tests” etc.

 Scripts should be well packaged so that anyone can use them when needed.

All this means that testers need to embrace version control and shared repositories as one of their
main tools.

4.10. Testware quality management and quality assurance

In traditional testing, there might be reviews for test models and adapter code, but in the agile
culture it is hard to see that happening very much. Formal reviews are replaced with collaboration,
team and pair work.

Still, reviews for models are an important thing and can be valuable and the more critical the
system under test is, the more they should be recommended. One idea could be cross-reviews
between testers of different projects. That would improve tester collaboration and aid in sharing
testing know-how inside the organisation – which is a problem in any “developer team centric” way
of working.

4.11. Making it visual and fun

Agile “likes” simple visual things: backlogs, dashboards etc. It is good to have something visual that
gives an overview to what is happening. Logs are obviously boring to watch, but MBT could use a
visual display that shows how the system is tortured by going through states with every possible
combination of values and in every possible sequence. Seeing that would be good for bonding the
team and showing it to the customer and other interest groups would be good for marketing the
team’s competence and will of making really robust software. It would be interesting, beneficial,
exciting and fun! But current tools don’t yet support that kind of monitoring.

4.12. Considerations for robot-assisted testing in agile

A robot has traditionally been something that belongs to a laboratory. But if we use them for testing
in agile development that thinking must be revised.

 For daily testing in the team of features and applications the robot should be located with the

team. Otherwise it will not get used. Of course, in that case it also must not disturb anyone – it

must be silent and not cause visual attractions (motions, blinking lights…).

 For “QA” testing, including maturity testing, in can be located elsewhere.

Of course, when a team of developers have a robot in the room, it will be used for things other than
testing. If this is not controlled, soon it may not be in working order. Perhaps in those cases two
robots should be purchased – one for testing, one for play.

4.13. New competences for tester

This is an essential issue, but omitted from this document. This paragraph is just to remind of that!

5. References

Ambler, Scott. 2002. Agile Modeling: Effective Practices for eXtreme Programming and the Unified
Process. Wiley Computer Publishing. 384 p.

