

ATAC

Support from testing for fast and dynamic software development

Project number: ITEA 2 10037

Edited by: Matti Vuori, TUT

Date: 2014/11/06

Document version no.: 1.0

Page 2 of 21

Table of Contents

1. Introduction ... 3

2. General aspects of speed ... 3

2.1. There are many kinds of speed .. 3

2.2. What is the optimum speed? .. 5

2.3. Things speed requires .. 6

2.4. Risks of high speed .. 7

2.5. Deployable does not mean desirable .. 8

2.6. Does more speed mean more work? .. 9

3. Consequences of going for speed .. 9

3.1. Traditional use of testing to gain speed .. 9

3.2. Need for many layers of thinking .. 10

3.3. Mental landscapes and competences ... 11

3.4. About methods and tools .. 12

3.5. What kind of speed do you prepare for? ... 12

3.6. Catching problems fast .. 13

4. Testing challenges in various types of rapid product development and solutions to
tackle them .. 13

4.1. Introduction .. 13

4.2. Meeting general challenges .. 13

4.3. New product development .. 14

4.4. Feature development ... 16

4.5. Reaction to technical changes in ecosystem .. 17

4.6. Platform changes ... 17

4.7. World of startups .. 18

4.8. Safety-critical systems ... 19

5. Main principles .. 19

6. Some final thoughts .. 20

APPENDIX: Product development system as an acoustic system ... 21

Page 3 of 21

1. Introduction

In ATAC we have researched test automation, but it is not an island. It is used in the context of the
overall testing activities, which is why we always need to give a context and frame for it – especially
when the issue is using it in practice and not just developing test automation technologies. Here the
framing is:

 Product development.

 Everything that done for product quality (and that in a broad sense, meaning its success

factors).

 All testing related activities, that is: all activities that produce timely information to support

decision making and development activities.

Today’s product development needs to be fast and dynamic. But how do we manage quality at the
high speed? A company should only try to drive at a speed it can handle. There is also not only one
type of speedy product development – there are many ways to do that. In this short document we
will take a short look into what kind of testing the various types would require – or benefit from –
and give some additional ideas for handling speed with managed quality.

2. General aspects of speed

2.1. There are many kinds of speed

What is “rapid” or “high speed”? We know that terms can often mean various things and things can
have many metrics. Now, whenever fast product development is mentioned, it also can mean
several things, some of which can have very different characteristics.

The following are some of the types of speed in product development.

Fast continuous speed

 Fast product pipeline. New products are brought to market at fast (but sustainable) pace.

 High continuous speed of producing new value to the customer. For example new features are

published “constantly”.

 Continuous deployment. Regular updating of product in use, for whatever reason. Short time

from entry to process to exit.

 (Note that the velocity of output does not necessitate that the time spent in development is short

– as analogy consider a highway that can be hundreds of kilometres long, but “outputs” cars

every second.)

Page 4 of 21

Figure 1. Flow-based new value introduction.

Figure 2. Rhythmic new value introduction.

Fast projects:

 Fast time to market. The time from idea / concept to market entry is short, meaning that the

product development is done at a fast pace.

 Fast velocity in large project keeping their schedule reasonable.

 Rapid pivoting of a product. If a product needs refocusing, it is done rapidly.

Figure 3. Fast project.

V

Idea

 V

 V++

Idea V

Page 5 of 21

Fast response:

 Fast response to any action from competition. For example when a competitor publishes a new

feature, own product is updated to match that rapidly. The “browser wars” between Netscape

and Microsoft in the 1990’s is an example of that and really emphasised high speed in software

development for the first time.

 Rapid reaction to emerging needs. When a need for a new feature emerges in the clientele, it is

met with rapid updating of the product.

 Rapid response to problems, threats, risks. Rapid bug fixes and hot fixes.

 Rapid response to changes in collaborating systems, including other systems in the overall

architecture, social media APIs.

Fast change of platform or ecosystem:

 Fast introduction of products to another operating system or device platform (besides old

platform – that is, turning into multi-platform provider).

 Fast porting of products to other environments.

 Fast changing of primary platform – abandoning old, embracing new.

So, there clearly are different types of speed and they require different competences: the ability to
have a high average velocity is a very different skill that the ability to take a spurt as needed. Also,
it can also vary whether the process is dominated by rhythm or more linear logistics.

2.2. What is the optimum speed?

The optimum speed varies from viewpoint:

 For customers, the optimum speed is what suits them best. If things work and there are no

unfilled needs, change is not wanted as it causes work and potential problems.

 For vendor, the optimum speed is what maximizes business success on a chosen time span.

That includes factors such as sales, costs and risk level.

In product development, all new features must be such that the customers notices them and
notices the value provided – after all, what is the point otherwise? Building engagement, interest
and temptation is even more important than producing “value”. Very small incremental changes are
not noticed at all! So increments should often be grouped so that the value is apparent – customers
see it, it can be used in marketing. And testing should be able to show the magnitude of
improvement – use some metrics to show how much better the new version is compared to the
previous one.

A myth about speed of market entry is that one should be the very fast in entering a new market or
bringing a new concept to market. Often it the case that the last on the market wins… if the entry is
done before someone manages to build a dominant market position. This is due to the difficulty of
selling a new concept: it is hard for customers to make buying decisions when there is nothing to
compare the product with. For later market entries it is possible to compare and select the “best”
one – best usually meaning the most desirable. Also, the later entrants are able to develop their
technologies better and learn from others’ mistakes.

Testing should, obviously, help companies understand how their product compares with the
competition.

Page 6 of 21

Of course, the need to provide value fast depends on many factors, such as the competition
dynamics and the nature of the new value. When the new things are a “must”, they need to be
delivered, or customers will get unhappy. If they are optional extra, they are either something to
sell, or something to increase customer happiness and also to provide a symbolic note about
activity and constant consideration about customers’ needs. But they can also be something
completely new, something unexpected, and in that case rapid “business as usual” delivery can be
a mistake. Instead, release should be planned carefully so that it is communicated well and
differentiates from other activities.

2.3. Things speed requires

Speed usually requires things like this:

 Very skilled driver.

 Control and coordination in vehicle and in environment.

 Very reliable systems – processes, collaboration.

 Clear rules that everyone understand and adhere to.

 Very powerful and reliable brakes.

 Seat belt and airbag.

 Plans for emergencies.

 Goals milestones, a good track to proceed on.

 Knowledge on where we are now.

 A speedometer – metrics.

 Sense of time, rhythm.

 Visibility to others about where we are speeding.

Of those, testing will provide brakes – it can help the project to stop before crashing into something.
It can also provide knowledge where we are now, which aids in control and sharing the status with
the environment.

Figure 4. Speed and tools for it can be tempting but dangerous.

Page 7 of 21

2.4. Risks of high speed

Maximum speed is not optimum, if it is compromises the business mission. Buses from Tampere to
Helsinki could be faster if they didn’t take any passengers. High speed does produce benefits, but
there are also risks in it. These are some examples of risks:

 Continuous updates lower the desirability of new product versions, making it harder to market

and sell them.

 If speed is not managed, all forms of quality can suffer.

The latter is due to processes not being developed suitably for the speed or there not being
sufficient resources. Examples:

 If testing is not good enough, new product releases can contain defects. (Luckily, they can also

be pulled back or repaired fast.)

 Trusting too much on test automation can let defects slip past that would have been caught by

manual testing. Or, if automated regressions testing is not sufficient, trivial regression failures

can happen. For higher development speed, both automated regression testing and manual

testing need to be improved.

 If the product architecture is not designed for agile changes, it will rot and the product will be

harder and harder to maintain.

 If the new features just cumulate and add to the feature count, the product will gain complexity

and will be buggy and hard to maintain – just like any current “high end” product.

 If documentation processes do not have the necessary resources, documentation will lag

behind, causing problems to the users. There are plenty of examples of this – for example,

LinkedIn changes its functions often and the documentation often refers to functions that do not

exist anymore.

 Quality of user interfaces will often suffer. Important functions are forgotten to include in new

revisions and usability assessments and testing are neglected – not to mention good design of

the new functionality.

 When startups evolve to a point where they start growing, gaining more speed in every activity

is essential. If practices are not adjusted or changed to meet the new needs, problems will

arise.

Clearly there are many risks in getting up to speed and various types of testing can be used to
control some of the risks. But the most important thing is that speed is not the goal, it is just a tool
for something – maximised customer satisfaction, keeping products ahead of competitors etc. And
that is the biggest risk: trying to reach speed for speed’s sake, without considering why it is done
and what are the things that would cause the biggest benefits for business.

 “Debt” is a word often used in this kind of situations. Existing technical debt and process debt
hinder speed improvements and working at higher speed will adjust accumulation of technical debt.
So in every speed improving activity there needs to be a focus to various kinds of debts.

Page 8 of 21

One of the challenges is to be able to have the speed at the long term. At one phase of a company
the focus of speed may be in concept level innovation, and in other phases in “feature logistics” –
giving small new things to a varied clientele. Allocating the always too few resources to wrong
things can be hazardous. For example, if a startup puts all its energy in the development of a
multiplatform continuous deployment engine, it will have less energy to use in the critical task of
developing desirable products. And good, fast processes that are in place, will tie the personnel into
existing things, not allowing for mental renewal. That is agility gone horribly wrong.

One problem is that engineering mentality may start to drive business speed, not just enabling it.
Speed of product development is a business issue at heart and thus needs dialogue from various
viewpoints:

 Customer needs.

 Business opportunities.

 Product development and innovation processes. Testing as provider of information.

 Production capabilities and enablers.

 Quality management. Testing as provider of information.

 Risk management.

2.5. Deployable does not mean desirable

A mental risk is to see product development as “logistics”, as operating a value transferring
machine. In that mind-set, speed records are broken what people think less about what is being
produced – humans being humans. Testing gets narrower focus, moves from validation to
verification. Just like when travelling fast one concentrates on checking whether we are on the map
where we should be, rather than whether it makes sense to be on that road.

One must remember that software development is not serial production. Every new feature, every
new build, every “item of value” is something unique and must be assessed carefully. There must
be time for good validation, because it cannot be left for the customers. And it cannot be done in a
speedy deployment pipeline, as it requires an integrated whole and peaceful mental environment.

Sometimes the levels of quality are presented that any new feature must pass, for example:

 The very first level is safe and secure. Nothing must be deployed to customer that is not safe

and secure.

 At the next level is deployable. Something can technically be delivered to customer if needed.

And that does not mean that it should be deployed.

 Third level is useful. The new functionality is that is in itself something valuable.

 The fourth level is technically solid. The new feature has no technical problems.

 Fifth level is usable. The new functionality can be used easily and without risks for its purpose.

 Next level is good user experience. While usable, the new feature offers good experience for

the user.

 At the highest level is desirability, which combines other factors. When something is really

desired, then the new deployment is seen to offer high value and is received with gratitude.

These (or equivalent) are the levels that should be assessed and testing should have a role in that.

Priorities on those levels obviously depend on the type of product, see table below. Of course the
priorities vary case by case, so this is just a visualisation that aims to show what kind of
characteristics should be designed and assured by testing and other means.

Page 9 of 21

Table 1. Priorities of quality levels for various system types (simplified). *** = critical, ** = important,
* = relevant

Quality level Consumer product B2B information
system

Infrastructure
technology

Safety-critical
system

Desirable *** *** ***

Good user
experience

*** **

Usable ** *** * ***

Useful * ** *** **

Technically solid ** *** *** ***

Deployable *** *** *** ***

Safe & secure ** *** *** ***

2.6. Does more speed mean more work?

Higher average velocity obviously means that more is produced, meaning also more things to test.
That could imply a need for more resources, but the speed could also be reached with current
resources when things are done more effectively, with perhaps a leap in process capability.

More rapid reaction to needs and external events does not mean that in average more work is
done. It is just done when it is needed, as fast as required.

Fast pivoting or fast concept creation is more a matter of product development competence and
utilisation of technologies that enable fast product creation.

But the main issue in all the types of speed is that everything must be controlled professionally.
Otherwise there will be chaos and lots of unnecessary work.

3. Consequences of going for speed

3.1. Traditional use of testing to gain speed

The traditional pathology has been to just skip testing or do less of it to gain speed. When most
testing has been left to the end of a project and there is a hurry to get the product out, testing was
just skipped or done less.

Of course, nowadays most people understand that testing must not be left to the end of the project,
but should be started in the beginning and done continuously with an aim to keep the product
technically stable all the time – ready for deployment, stable to handle any changes without falling
apart.

But healthy principles include:

 Test in parallel. Let testing proceed at the same time as development.

 Test less. That requires less implementation, a more focused product, which may be desirable.

One development principle is to “develop for now”. That means that testing should focus to

most important issues in next release – yet at the same time to keeping the platform robust for

any new developments. Good up-front work in user interfaces reduces need for testing later

(but does not remove it).

 Test faster. Use automation and competent testers.

Page 10 of 21

 Test in advance. Use well-tested components.

3.2. Need for many layers of thinking

Testing is still dominated by “technical testing”, that is, functional testing and similar. While it tackles
business and user processes and tasks, it is still on the engineering level. Consider this statement
from a recent testing magazine:

“A program is testable if and only if its Turing machine representation can be flowcharted, is
deterministic and is always-halting, and all possible faults can be sensitized to output.”

It demonstrates much of the underlying thinking in testing. At the level of product development one
could say:

“A product is testable anytime when it can be presented in some way”.

Testing and its ideal are seen to be part of the engineering paradigm. But so is the general product
development culture! Only gradually are we learning that engineering is not product development –
we need a broader view to the systems under development and also to the needs of the customers.
An eye-opener was at a time the understanding that paper machines need to be designed to be
attractive. Similar learnings will happen in many domains today.

Of course, we need many layers in testing thinking and action, all of which fulfil their particular
needs. The problem is when testing is too concentrated on some level, ignoring others. The table
below visualises the thinking differences between engineering and product-oriented testing.

Table 2. Comparison between engineering-oriented and product-oriented testing (caricature)

Element Engineering-oriented testing Product-oriented testing

View to system Internal view, structure,
functions, architecture

External view, customer value,
requirements

Metrics Absolute Relative to competition, past

Source of quality criteria Standards, own views Customer desires

Compromises Coverage Technical versus filling needs,
including release speed

When testing is done When closing criteria are met
(such as coverage)

When it has found the information
needed for decision making or
activities

General testing basis Specifications Reality, customer’s world

UI testing basis Usability, standards User experience, reaching goals,
usability

Tester focus Defined testing tasks and
methods

Information provision using any
means

Process approach Testing lifecycle Agile response to information needs

Role of test automation Should test “everything” Frees testers to use their mind for
finding new information

World view Testing creates control The world insecure

Page 11 of 21

Still, it must be remembered that testing style and culture are always a reflection of development
style and culture and need to have a suitable match. Developing of testing requires developing of
the whole product development activity.

3.3. Mental landscapes and competences

Doing things rapidly means that there is not much time to ponder and discuss things. Developers
and testers must have clear understanding of critical issues and a risk-aware mind-set. In fast
workflows we see in practice the principle in Toyota production system that everyone may stop the
process at any time – for example, a manual tester must have the courage to say that this build is
not good enough to be deployed to customer.

All modern testing requires understanding of the business and the customers’ needs and this
“domain of speed” emphasises it.

Strictness is needed to keep the processes rolling and that applies to testing too. Tests must never
be skipped. One good feature of automation is that one can never think that “this is just a simple
one-liner and it doesn’t need not be tested” – it will get at least some automated regression testing
automatically. And when manual testing is integrated in the workflows, it will be (or at least should
be) signed off by a manual tester. Of course, this is how things should work, and not how they
always work.

One needs to differentiate the constant throughput and the time spent on development. Which one
is more important, needs to be analysed and things balanced.

More essential than speed of a train is that you get to the next station without crashing…

One needs to remember that speed is not a value as such. Number of deployments per time unit is
no value as such – or rather it is waste. Value for business is the goal.

Table 3. Some essential tester competences for two main types of speed (simplified)

Competence High velocity High reactivity

Tester identity Strong tester identity as counter
force for logistic thinking

Personal strength Courage to stop deployment if
quality is not sufficient

General competence High generic tester key
competencies

High generic tester key
competencies

Large personal “toolbox” with which
to tackle fast any new testing task

Ability to work fast and in agile
manner

Exploratory testing skills

Risk related Regression awareness Ability to analyse of how changes
affect system

Regression awareness

Risk analysis skills

Understanding customer Understanding how changed thing
will be used – and how it should be
tested

Page 12 of 21

Competence High velocity High reactivity

Test system control Configuration management skills

Programming skills Varies. Scripting skills very
useful.

3.4. About methods and tools

Sometimes misguided managers may think that testing needs not be that good, because faulty
functionality can just be pulled back using the deployment mechanism. Such managers need to
remember that what is ok for non-business-critical systems is not usually ok for customer solutions.
But that emphasises the fact that the deployment mechanisms and the pull-back mechanisms must
be very reliable – they need to be well designed and tested.

All in all, reliable workflows are essential, so planning and designing them is essential.

Many textbooks – and many “experts” – forget largely about manual testing, but for most systems it
is a critical step before deployment. Functional testing should usually be done, but testing of user
experience and usability must not be forgotten. Related to this is the idea that every tester should
have programming skills – and use them daily. In fact, one could think that the culture of speed may
benefit from people who have other approaches than test automation. Speedy business and good
testing in general benefit from diversity in skills, approaches and thinking.

When going for velocity, there is a tendency to make “batch size” smaller. It makes testing easier
as testing of new value can more concentrate on a manageable set of functionality. Instead of a
release candidate for a new system version, it is just a matter of handling a small individual change
(and its associated, hopefully small regression potential).

When the speed is about reacting to events, preparation helps: good architectures that make
modifications easy; testing of upcoming changes in external dependencies in test environments etc.
Not everything must happen in real-time.

Speed in any form requires good configuration management and that greatly helps in making
testing more managed.

3.5. What kind of speed do you prepare for?

Consider the world of cars. A Formula 1 car is very fast, but hopelessly complex and only suits a
given type of track. You can make speed records with that.

But how about the need to adapt to new kind of territory, new kind of business, new customers or
new concepts? A rally car is frighteningly fast too, but can be used on asphalt and bad gravel roads
and it is way simpler to implement and use. You won’t make absolute speed records with it but
those are not your business anyway.

So, development and deployment systems can become locally optimised. They may maximise the
speed of technical deployment but not be optimal for speed in business level. Flexibility and
simplicity in every area seems essential. That means also that all testing arrangements should
support flexibility – or rapid agility:

 Capability to test new business ideas.

 Capability to test things at concept level.

 Capability to test technologies that are not good for automation (yet).

 Capability to test changed product technology, components and architecture.

 Capability to support experimentation at all levels – product concepts, technology trials.

Page 13 of 21

 Capability to provide information that business needs for business decisions.

 Etc…

3.6. Catching problems fast

Systems aiming for velocity are based on workflows and logistics. With those, it is essential to catch
any problems as early as possible. That means that for the technical quality the QA system should:

 Have good unit testing and static analysis.

 Have solid regression testing at all phases.

 Utilize tools such as static code analysis to pinpoint potential problems.

 Use test environments that are “exactly” similar to any production environments.

 Generally emphasize the front end of the process.

 Etc.

4. Testing challenges in various types of rapid product development and
solutions to tackle them

4.1. Introduction

There are, luckily, many possibilities in testing that can be implemented to make the raising of
speed possible. Here are some examples of them.

4.2. Meeting general challenges

Table 4. General challenges and corresponding testing solutions

Type Special challenges Specific solutions Notes

(General) Handling regression Good regression testing
integrated into the build
process

Exploratory testing for
regression too

Identification of affected
areas (functionality,
modules, code) to guide
focused testing

Tools can be used to
identify the effects of
changes and regression
tests can be targeted
accordingly – from wide
and shallow to more
focused and deep

 Robust, stable code Low level (unit) testing
practices

Stable base is essential

 Assuring maximum
value

Risk based testing

Solid testing for things
that produce new value

Testers too must
understand where value
comes from

Page 14 of 21

Type Special challenges Specific solutions Notes

 Fast deployment of test
systems

Programmatically
generated and
configured test systems

Programmatically
generated and
configured virtual
machines

Use of cloud services

Virtual machines
become easier and
easier to create and
deploy

 Optimising of testing
resources

Risk based testing
strategy

Re-usable test assets

Critical for large and
complex systems

 Flexibility, adaptability Competent testers

Flexible testing tools

Tools that need minimal
adaptation and
configuration

Platform-independent
(agnostic) tools

This is a key element of
Lean – ability to
immediately adapt to
anything

Physical testing robots
are examples of UI
agnostic tools

 Good testability to allow
rapid testing

Testability design

Choice of technologies

Testability reviews

For both manual and
automated testing

 Automating UI-level
testing when testability
of applications is bad

Testing tools that
require no
instrumentation in SUT
(using shape
recognition, OCR), such
as physical testing
robots

4.3. New product development

Table 5. New product development challenges and corresponding testing solutions

Type Special challenges Specific solutions Notes

Concept testing Rapid testing at all
relevant levels

Agile testing

Flexible test systems

Fast MVP-based first
product development

Finding product
preferences

Preference testing

A/B testing

A new competence area
for most testers

A/B may require good
technical platform

 Finding product
priorities

User experience testing

Product analysis

Analysis of usage logs

Page 15 of 21

Type Special challenges Specific solutions Notes

 Testing of user
experience

User experience testing

Product analysis

 Providing a solid
version where technical
bugs don’t affect results

Proper traditional s/w
testing (done in
lightweight manner –
exploratory testing
emphasised)

Fast prototype-based
product development

(See much of Fast
MVP-based first product
development)

Rapid testing of
prototypes made with
any technology

Bringing a product to
existing, competitive
market

Understanding the
important criteria in
competition, the
success factors

Testing of competitors

 Understanding how the
product compares with
competitors

Comparison testing,
benchmarking

Using relative product
quality metrics

Comparison of UX and
technology

Introducing a disruptive
product

Is new concept
understood?

Concept testing

Analyse and test in
relation to understood
concepts

 Is the new concept
desirable

UX and other testing

Agile refocusing of
products (pivoting)

Refocusing of testing Testers with versatile
competence

Skills, experience

 Abstract test
automation test design
technology

Model-based testing

Domain-specific
languages

Anything that separates
abstract actions from
implementations

 Good user experience
and usability testing

Usability and user
experience testers

Use of consultants
when making critical
decisions is advisable

Fast new product
pipeline: individual
products

Fast testing of new
concepts

Prototype testing

Preference testing

Testing of concept is
often about UX testing

 Good testing for
innovative new features

Fast UX and usability
testing and analysis

Good exploratory
testing & other manual
testing

UX testing can be rapid,
but should be done
properly

“Speed requires brains”

 Strict, professional
processes

Strictness results for
good system design,
not from bureaucracy

Fast new-product
pipeline: product
families

Solid basic test system
for platform technology

Good test automation

Best platform-specific
tools

Need to select tools
carefully – but consider
expansion to other
platforms

Page 16 of 21

Type Special challenges Specific solutions Notes

 Test design at high
abstraction level

Keyword-based testing

Model-based testing

Domain-specific
languages

For example Robot
framework offers
various abstraction
levels defined in domain
& culture specific
means

Fast new-product
pipeline: product family
for many platforms

Tools that work on
many platforms

Platform-independent
workflows

Robot testing

Platform independence
still needs adaptation to
each platform, where
test robots can help

 Amount of testing for
any new version launch
(simultaneous for all
platforms)

Test automation Goal is to test all
versions in parallel –
virtual machines are
cheap

 Management of test
system architecture

Simple, platform-
independent systems

OS abstraction

4.4. Feature development

Table 6. Feature development challenges and corresponding testing solutions

Type Special challenges Specific solutions Notes

Rapid introduction of
new features to match
competition, needs,
changes in environment

Good testing of new
features

Good exploratory
testing & other manual
testing

Testing here need user
and business approach
– UX emphasised

 Handling of regression Solid regression test
automation

 Rapid starting of testing
of new features

Exploratory testing

Automated test
generation from designs

Automated test
generation from
implementation

All testing need to start
fast

Page 17 of 21

4.5. Reaction to technical changes in ecosystem

Table 7. Rapid reaction to technical changes and corresponding testing solutions

Type Special challenges Specific solutions Notes

Rapid introduction of
new or changed
functionality to match
changes in
interoperating
technology (API
changes etc.)

Testing for changes in
external APIs (such as
social media APIs)

Automated regression
testing against latest
and upcoming APIs

Need to monitor what is
upcoming from external
systems – their
roadmaps, development
versions, betas

Rapid introduction of
new or changed
functionality to match
changes in new OS
versions

Good testing of new
functionality

Good exploratory
testing & other manual
testing

 Testing for changes in
OS APIs

Automated regression
testing against the new
OS version

Need to monitor what is
upcoming from external
systems – their
roadmaps, development
versions, betas

Fast fixes, security and
functional updates

Fast testing and
deployment, ability for
continuous deployment

Testing integrated into
continuous deployment
workflow

 Managing regression Good regression testing

 Fast testing for large
and complex systems

Optimisation of test
suites, test runs

Complex systems need
complex analysis….
good tools

4.6. Platform changes

Table 8. Rapid change of product platform or ecosystem

Type Special challenges Specific solutions Notes

Change of platform How to get testers to
learn the specifics of
new platform

Use portable
technologies and
testing tools – less to
change

Hire competent testers
who have platform-
independent
competence of
experience from more
than one platform

Emphasise exploratory
testing while automating
proceeds

For example Robot
Framework in platform
independent – just
adaptation changes

Page 18 of 21

Type Special challenges Specific solutions Notes

Going multiplatform How to manage the
multiple test assets and
testing work

Use high-abstraction
level test designs that
just need different
adaptation

Use platform-agnostic
testing methods (such
as robot-based)

4.7. World of startups

Table 9. Challenges for startups moving to growth phase

Type Special challenges Specific solutions Notes

More customers or
more products

Planning how testing is
done

Overall testing process
development

Considering all aspects
of good testing,
including competence,
manual and automated
testing; all relevant test
types

 Building a professional
testing systems

Rent environments from
cloud

Turn-key systems for
startups will be more
and more available

 Select test automation
that scales

Choose widely used
industrial-grade
systems that support
many platforms
(because plans about
those will change)

 Starting from small Develop automation
gradually, incrementally

Invest first for good
manual testing

Even if building the
testing systems is
important, it must not
hog the focus of the
company or even the
testing people

Page 19 of 21

4.8. Safety-critical systems

Table 10. Challenges for safety-critical system development

Type Special challenges Specific solutions Notes

General issues Faster testing speed in
general

Use of test automation Need to be aware of the
risks in relying on
automation

 Common technologies
for safety and functional
architectures enables
using same tools

Market entry,
certification

Meeting safety standard
requirements

Choose a safety
standard that does not
have excessive testing
requirements

Machine builders prefer
ISO 13849 rather than
IEC 61508. What
standards are used
needed depends on
markets and other
factors.

Validation testing (for
certification)

Fast validation of the
overall system

Separate safety-critical
and not safety-critical
systems carefully and
optimise testing for both

 Use physical test
automation (robots) for
system UIs

Reducing focus for
testing after changes

Reduce focus with
confidence and proof

Use tools to identify
effects of change

Regression testing of
everything is time-
consuming

Reducing time spent on
documentation

Reducing time spent on
test documentation

Use product / test /
lifecycle management &
testing tools that
produce interlinked &
traced documentation
“automatically”

5. Main principles

The main principles for supporting raised speed with testing are (at least) these:

 Understanding what is done. Make testers understand the goal of development and the

customer’s needs so they can prioritise and focus their actions and make compromises

elsewhere when speed is critical.

 Don’t go for speed by compromising quality. Learn to do things properly first, then add

manageable speed. That means that that only add speed, if your testing can handle it, and your

testing can make the increased speed manageable.

 Have a solid testing approach to keep the platform in good shape so direction changes can be

made rapidly.

 Use robust test automation that doesn’t break workflows.

 Use intelligent manual testing, because automation never notices everything.

 Testing must be able to show differences to previous release to customer and do comparisons.

Page 20 of 21

 Delivery workflows must be able to be stopped if testing tells that quality is not sufficient.

 Have everything that done and tested under strict configuration and version control.

6. Some final thoughts

Does speed risk quality? If not managed properly, yes. But sometimes speed produces quality
when it keeps the difference between needs and implementations as small as possible. Testing has
a central role in maintaining both customer centric and technical quality.

There are many pitfalls in trying to improve speed. It makes sense to differentiate the capability for
speed and the actual speed used, which is a matter of business.

To fully support activities and decision making at product development level (and not only at
engineering level), tester roles and competences must be – or can be – rethought.

Page 21 of 21

APPENDIX: Product development system as an acoustic system

To understand the dynamism of the product development, let’s consider it as an acoustic system
consisting of volumes and connecting pipes that have length and diameter. This is because even
“continuous” activity is not truly continuous, but information and activity always moves in a rhythm.

A thicker pipe can pass more information, but only if the frequency of the system is suited to the
frequency it is driven. The basic ideas in acoustics are that a shorter pipe has a higher frequency.
When it is connected to a volume, the smaller the volume is, the higher the frequency and vice
versa. And the thicker the pipe, the higher the natural frequency is and vice versa.

Using this analogy we see that we can achieve higher speed if:

 Input domain is restricted. That helps us understand better the requirements of the system and

control the focus and size of the developed system. It is also easier to understand risks, design

and execute the necessary testing. Smaller, more focused systems have less defects and

require less testing than systems that have a wide, non-focused scope.

 There is a short path from customers to development. That way, information can flow fast; there

are fewer errors in understanding things. This is why agile teams emphasise direct customer

participation.

 The resources for development and testing are large.

 The deployment pipeline is short. Of course, it must not be too short, as it needs to contain the

checks that the new functionality is something that should be passed to customer. But many of

the checks can be integrated to the development “volume”.

Input domain
(scope of
system)

Needs,
opportunities

Development,
design, testing

Deployment

Output
domain (=

input)

Flow

